Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611836

RESUMO

As a traditional Chinese medicine, Salvia miltiorrhiza Bunge was first recorded in the Shennong Materia Medica Classic and is widely used to treat "the accumulation of symptoms and masses". The main active ingredient of Salvia miltiorrhiza Bunge, Tanshinone IIA (TIIA), has shown anti-inflammatory, antitumor, antifibrosis, antibacterial, and antioxidative activities, etc. In this study, the results showed that TIIA could inhibit the proliferation and migration of HepG2 cells and downregulate glutathione (GSH) and Glutathione Peroxidase 4 (GPX4) levels; besides, TIIA induced the production of Reactive Oxygen Species (ROS), and upregulated the total iron content. Based on network pharmacology analysis, the antitumor effect of TIIA was found to be focused on the endoplasmic reticulum (ER)-mediated ferroptosis signaling pathway, with protein kinase R (PKR)-like ER kinase (PERK)-activating transcription factor 4 (ATF4)-heat shock 70 kDa protein 5 (HSPA5) as the main pathway. Herein, TIIA showed typical ferroptosis characteristics, and a ferroptosis inhibitor (ferrostatin-1) was used to verify the effect. The antitumor effects of TIIA, occurring through the inhibition of the PERK-ATF4-HSPA5 pathway, were further observed in vivo as significantly inhibited tumor growth and the improved pathological morphology of tumor tissue in H22-bearing mice. In summary, the antitumor mechanism of TIIA might be related to the downregulation of the activation of PERK-ATF4-HSPA5 pathway-mediated ferroptosis.


Assuntos
Fator 4 Ativador da Transcrição , Ferroptose , Animais , Camundongos , Fator 4 Ativador da Transcrição/genética , Chaperona BiP do Retículo Endoplasmático , Abietanos/farmacologia , Glutationa
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 447-454, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597435

RESUMO

OBJECTIVE: To investigate the neuroprotective effect of Huangpu Tongqiao Capsule (HPTQ) in a rat model of Wilson disease (WD) and explore the underlying mechanisms. METHODS: SD rat models of WD were established by feeding of coppersupplemented chow diet and drinking water for 12 weeks, and starting from the 9th week, the rats were treated with low-, moderate- and high-dose HPTQ, penicillamine, or normal saline by gavage on a daily basis for 3 weeks. Copper levels in the liver and 24-h urine of the rats were detected, and their learning and memory abilities were evaluated using Morris water maze test. HE staining was used to observe morphological changes of CA1 region neurons in the hippocampus, and neuronal apoptosis was detected with TUNEL staining. Hippocampal expressions of endoplasmic reticulum stress (ERS)-mediated apoptosis pathway-related proteins GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 at both the mRNA and protein levels were detected using RT-qPCR, immunofluorescence assay or Western blotting. RESULTS: Compared with normal control rats, the rat models with copper overload-induced WD exhibited significantly increased copper levels in both the liver and 24-h urine, impaired learning and memory abilities, obvious hippocampal neuronal damage in the CA1 region and increased TUNEL-positive neurons (P<0.01), with also lowered mRNA and protein expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the hippocampus (all P<0.01). Treatments with HPTQ and penicillamine significantly lowered copper level in the liver but increased urinary copper level, improved learning and memory ability, alleviated neuronal damage and apoptosis in the hippocampus, and decreased hippocampal expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the rat models (P<0.01 or 0.05). CONCLUSION: HPTQ Capsule has neuroprotective effects in rat models of WD possibly by inhibiting ERS-mediated apoptosis pathway.


Assuntos
Disfunção Cognitiva , Degeneração Hepatolenticular , Ratos , Animais , Ratos Sprague-Dawley , Degeneração Hepatolenticular/tratamento farmacológico , Caspase 3/metabolismo , Caspase 9/metabolismo , Caspase 12/metabolismo , Cobre/metabolismo , Cobre/farmacologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Apoptose , Hipocampo/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Penicilamina/farmacologia , Disfunção Cognitiva/tratamento farmacológico , RNA Mensageiro
3.
Chin J Nat Med ; 22(4): 307-317, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658094

RESUMO

Ulcerative colitis (UC), a prevalent form of inflammatory bowel disease (IBD), may result from immune system dysfunction, leading to the sustained overproduction of reactive oxygen species (ROS) and subsequent cellular oxidative stress damage. Recent studies have identified both peroxisome proliferator-activated receptor-γ (PPARγ) and endoplasmic reticulum (ER) stress as critical targets for the treatment of IBD. Oroxyloside (C22H20O11), derived from the root of Scutellariabaicalensis Georgi, has traditionally been used in treating inflammatory diseases. In this study, we investigated the molecular mechanisms by which oroxyloside mitigates dextran sulfate sodium (DSS)-induced colitis. We examined the effects of oroxyloside on ROS-mediated ER stress in colitis, including the protein expressions of GRP78, p-PERK, p-eIF2α, ATF4, and CHOP, which are associated with ER stress. The beneficial impact of oroxyloside was reversed by the PPARγ antagonist GW9662 (1 mg·kg-1, i.v.) in vivo. Furthermore, oroxyloside decreased pro-inflammatory cytokines and ROS production in both bone marrow-derived macrophages (BMDM) and the mouse macrophage cell line RAW 264.7. However, PPARγ siRNA transfection blocked the anti-inflammatory effect of oroxyloside and even abolished ROS generation and ER stress activation inhibited by oroxyloside in vitro. In conclusion, our study demonstrates that oroxyloside ameliorates DSS-induced colitis by inhibiting ER stress via PPARγ activation, suggesting that oroxyloside might be a promising effective agent for IBD.


Assuntos
Colite , Sulfato de Dextrana , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Camundongos Endogâmicos C57BL , PPAR gama , Espécies Reativas de Oxigênio , Animais , PPAR gama/metabolismo , PPAR gama/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Masculino , Humanos , Substâncias Protetoras/farmacologia
4.
Discov Med ; 36(183): 753-764, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665024

RESUMO

BACKGROUND: Dental fluorosis is a discoloration of the teeth caused by the excessive consumption of fluoride. It represents a distinct manifestation of chronic fluorosis in dental tissues, exerting adverse effects on the human body, particularly on teeth. The transmembrane protein 16a (TMEM16A) is expressed at the junction of the endoplasmic reticulum and the plasma membrane. Alterations in its channel activity can disrupt endoplasmic reticulum calcium homeostasis and intracellular calcium ion concentration, thereby inducing endoplasmic reticulum stress (ERS). This study aims to investigate the influence of calcium supplements and TMEM16A on ERS in dental fluorosis. METHODS: C57BL/6 mice exhibiting dental fluorosis were subjected to an eight-week treatment with varying calcium concentrations: low (0.071%), medium (0.79%), and high (6.61%). Various assays, including Hematoxylin and Eosin (HE) staining, immunohistochemistry, real-time fluorescence quantitative polymerase chain reaction (qPCR), and Western blot, were employed to assess the impact of calcium supplements on fluoride content, ameloblast morphology, TMEM16A expression, and endoplasmic reticulum stress-related proteins (calreticulin (CRT), glucose-regulated protein 78 (GRP78), inositol requiring kinase 1α (IRE1α), PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6)) in the incisors of mice affected by dental fluorosis. Furthermore, mice with dental fluorosis were treated with the TMEM16A inhibitor T16Ainh-A01 along with a medium-dose calcium to investigate the influence of TMEM16A on fluoride content, ameloblast morphology, and endoplasmic reticulum stress-related proteins in the context of mouse incisor fluorosis. RESULTS: In comparison to the model mice, the fluoride content in incisors significantly decreased following calcium supplements (p < 0.01). Moreover, the expression of TMEM16A, CRT, GRP78, IRE1α, PERK, and ATF6 were also exhibited a substantial reduction (p < 0.01), with the most pronounced effect observed in the medium-dose calcium group. Additionally, the fluoride content (p < 0.05) and the expression of CRT, GRP78, IRE1α, PERK, and ATF6 (p < 0.01) were further diminished following concurrent treatment with the TMEM16A inhibitor T16Ainh-A01 and a medium dose of calcium. CONCLUSIONS: The supplementation of calcium or the inhibition of TMEM16A expression appears to mitigate the detrimental effects of fluorosis by suppressing endoplasmic reticulum stress. These findings hold implications for identifying potential therapeutic targets in addressing dental fluorosis.


Assuntos
Fator 6 Ativador da Transcrição , Adenina/análogos & derivados , Anoctamina-1 , Cálcio , Suplementos Nutricionais , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Fluorose Dentária , Indóis , Camundongos Endogâmicos C57BL , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fluorose Dentária/patologia , Fluorose Dentária/metabolismo , Fluorose Dentária/etiologia , Camundongos , Fator 6 Ativador da Transcrição/metabolismo , Anoctamina-1/metabolismo , Anoctamina-1/antagonistas & inibidores , Anoctamina-1/genética , Cálcio/metabolismo , Ameloblastos/metabolismo , Ameloblastos/patologia , Ameloblastos/efeitos dos fármacos , Fluoretos/toxicidade , Fluoretos/efeitos adversos , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Endorribonucleases/metabolismo , Masculino , Modelos Animais de Doenças
5.
Aging (Albany NY) ; 16(7): 5916-5928, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38536006

RESUMO

BACKGROUND: Fluorouracil (5-FU) might produce serious cardiac toxic reactions. miRNA-199a-5p is a miRNA primarily expressed in myocardial cells and has a protective effect on vascular endothelium. Under hypoxia stress, the expression level of miRNA-199a-5p was significantly downregulated and is closely related to cardiovascular events such as coronary heart disease, heart failure, and hypertension. We explored whether 5-FU activates the endoplasmic reticulum stress ATF6 pathway by regulating the expression of miRNA-199a-5p in cardiac toxicity. METHODS: This project established a model of primary cardiomyocytes derived from neonatal rats and treated them with 5-FU in vitro. The expression of miRNA-199a-5p and its regulation were explored in vitro and in vivo. RESULTS: 5-FU decreases the expression of miRNA-199a-5p in cardiomyocytes, activates the endoplasmic reticulum stress ATF6 pathway, and increases the expression of GRP78 and ATF6, affecting the function of cardiomyocytes, and induces cardiac toxicity. The rescue assay further confirmed that miRNA-199a-5p supplementation can reduce the cardiotoxicity caused by 5-FU, and its protective effect on cardiomyocytes depends on the downregulation of the endoplasmic reticulum ATF6 signaling pathway. CONCLUSIONS: 5-FU can down-regulate expression of miRNA-199a-5p, then activate the endoplasmic reticulum stress ATF6 pathway, increase the expression of GRP78 and ATF6, affect the function of cardiomyocytes, and induce cardiac toxicity.


Assuntos
Fator 6 Ativador da Transcrição , Cardiotoxicidade , Regulação para Baixo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Fluoruracila , MicroRNAs , Miócitos Cardíacos , Transdução de Sinais , Animais , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Ratos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fluoruracila/toxicidade , Fluoruracila/efeitos adversos , Cardiotoxicidade/metabolismo , Cardiotoxicidade/genética , Cardiotoxicidade/etiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Cultivadas , Ratos Sprague-Dawley , Masculino
6.
Chin J Integr Med ; 30(5): 398-407, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38386253

RESUMO

OBJECTIVE: To investigate the pharmacological mechanism of Qili Qiangxin Capsule (QLQX) improvement of heart failure (HF) based on miR133a-endoplasmic reticulum stress (ERS) pathway. METHODS: A left coronary artery ligation-induced HF after myocardial infarction model was used in this study. Rats were randomly assigned to the sham group, the model group, the QLQX group [0.32 g/(kg·d)], and the captopril group [2.25 mg/(kg·d)], 15 rats per group, followed by 4 weeks of medication. Cardiac function such as left ventricular ejection fraction (EF), fractional shortening (FS), left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), the maximal rate of increase of left ventricular pressure (+dp/dt max), and the maximal rate of decrease of left ventricular pressure (-dp/dt max) were monitored by echocardiography and hemodynamics. Hematoxylin and eosin (HE) and Masson stainings were used to visualize pathological changes in myocardial tissue. The mRNA expression of miR133a, glucose-regulated protein78 (GRP78), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), X-box binding protein1 (XBP1), C/EBP homologous protein (CHOP) and Caspase 12 were detected by RT-PCR. The protein expression of GRP78, p-IRE1/IRE1 ratio, cleaved-ATF6, XBP1-s (the spliced form of XBP1), CHOP and Caspase 12 were detected by Western blot. TdT-mediated dUTP nick-end labeling (TUNEL) staining was used to detect the rate of apoptosis. RESULTS: QLQX significantly improved cardiac function as evidenced by increased EF, FS, LVSP, +dp/dt max, -dp/dt max, and decreased LVEDP (P<0.05, P<0.01). HE staining showed that QLQX ameliorated cardiac pathologic damage to some extent. Masson staining indicated that QLQX significantly reduced collagen volume fraction in myocardial tissue (P<0.01). Results from RT-PCR and Western blot showed that QLQX significantly increased the expression of miR133a and inhibited the mRNA expressions of GRP78, IRE1, ATF6 and XBP1, as well as decreased the protein expressions of GRP78, cleaved-ATF6 and XBP1-s and decreased p-IRE1/IRE1 ratio (P<0.05, P<0.01). Further studies showed that QLQX significantly reduced the expression of CHOP and Caspase12, resulting in a significant reduction in apoptosis rate (P<0.05, P<0.01). CONCLUSION: The pharmacological mechanism of QLQX in improving HF is partly attributed to its regulatory effect on the miR133a-IRE1/XBP1 pathway.


Assuntos
Medicamentos de Ervas Chinesas , Estresse do Retículo Endoplasmático , Insuficiência Cardíaca , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Masculino , Ratos Sprague-Dawley , Cápsulas , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , Chaperona BiP do Retículo Endoplasmático , Apoptose/efeitos dos fármacos , Caspase 12/metabolismo , Caspase 12/genética , Miocárdio/patologia , Miocárdio/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Ratos , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia
7.
Phytother Res ; 38(3): 1681-1694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311336

RESUMO

Diabetic cardiomyopathy (DCM) is an important complication resulting in heart failure and death of diabetic patients. However, there is no effective drug for treatments. This study investigated the effect of D-pinitol (DP) on cardiac injury using diabetic mice and glycosylation injury of cardiomyocytes and its molecular mechanisms. We established the streptozotocin-induced SAMR1 and SAMP8 mice and DP (150 mg/kg/day) intragastrically and advanced glycation end-products (AGEs)-induced H9C2 cells. H9C2 cells were transfected with optineurin (OPTN) siRNA and overexpression plasmids. The metabolic disorder indices, cardiac dysfunction, histopathology, immunofluorescence, western blot, and immunoprecipitation were investigated. Our results showed that DP reduced the blood glucose and AGEs, and increased the expression of heart OPTN in diabetic mice and H9C2 cells, thereby inhibiting the endoplasmic reticulum stress (GRP78, CHOP) and glycophagy (STBD1, GABARAPL1), and alleviating the myocardial apoptosis and fibrosis of DCM. The expression of filamin A as an interaction protein of OPTN downregulated by AGEs decreased OPTN abundance. Moreover, OPTN siRNA increased the expression of GRP78, CHOP, STBD1, and GABARAPL1 and inhibited the expression of GAA via GSK3ß phosphorylation and FoxO1. DP may be helpful to treat the onset of DCM. Targeting OPTN with DP could be translated into clinical application in the fighting against DCM.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Inositol/análogos & derivados , Humanos , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Chaperona BiP do Retículo Endoplasmático , Miócitos Cardíacos , Estresse do Retículo Endoplasmático , Transdução de Sinais , Apoptose , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia
8.
BMC Complement Med Ther ; 24(1): 36, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216941

RESUMO

BACKGROUND: Endoplasmic reticulum (ER) stress, promoting lipid metabolism disorders and steatohepatitis, contributes significantly to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Hugan Qingzhi tablets (HQT) has a definite effect in the clinical treatment of NAFLD patients, but its mechanism is still unclear. This study aims to investigate the effects of HQT on ER stress in the liver tissues of NAFLD rats and explore the underlying mechanism. METHODS: The NAFLD rat model was managed with high-fat diet (HFD) for 12weeks. HQT was administrated in a daily basis to the HFD groups. Biochemical markers, pro-inflammatory cytokines, liver histology were assayed to evaluate HQT effects in HFD-induced NAFLD rats. Furthermore, the expression of ER stress-related signal molecules including glucose regulating protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), p-PERK, eukaryotic translation initiation factor 2α (EIF2α), p-EIF2α, activating transcription factor 4 (ATF4), acetyl-coenzyme A-carboxylase (ACC), activating transcription factor (ATF6), and nuclear factor-kappa B-p65 (NF-κB-p65) were detected by western blot and/or qRT-PCR. RESULTS: The histopathological characteristics and biochemical data indicated that HQT exhibited protective effects on HFD-induced NAFLD rats. Furthermore, it caused significant reduction in the expression of ERS markers, such as GRP78, PERK, p-PERK, and ATF6, and subsequently downregulated the expression of EIF2α, p-EIF2α ATF4, ACC, and NF-κB-p65. CONCLUSIONS: The results suggested that HQT has protective effect against hepatic steatosis and inflammation in NAFLD rats by attenuating ER stress, and the potential mechanism is through inhibition of PERK and ATF6 pathways.


Assuntos
Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Humanos , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases , RNA/efeitos adversos , Chaperona BiP do Retículo Endoplasmático , NF-kappa B , Retículo Endoplasmático/metabolismo , Fatores Ativadores da Transcrição/farmacologia , Estresse do Retículo Endoplasmático , Comprimidos/efeitos adversos , Fator 6 Ativador da Transcrição/farmacologia
9.
Poult Sci ; 103(3): 103442, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262335

RESUMO

Intermittent cold stimulation (ICS) enhances broilers' resistance to cold stress. Nonetheless, further research is needed to investigate the underlying mechanisms that enhance cold stress resistance. A total of 160 one-day-old male Ross 308 broilers were randomly divided into 2 groups (CC and CS5), with the CC group managing temperature according to the standard for broiler growth stages, while the CS5 group were subjected to cold stimulation at a temperature 3℃ lower than the CC group for 5 h, every 2 d from 15 to 35 d. Sampling was conducted at 36 d (36D), 50 d (50D) and after acute cold stress for 24 h (Y24). First, we examined the effects of ICS on broiler growth performance, meat quality, antioxidant capacity, and lipid metabolism. The results demonstrated that ICS enhanced the performance of broilers to a certain degree. Specifically, the average weight gain in the CS5 group was significantly higher than that of the CC group, and the feed conversion ratio significantly decreased compared to CC at 4 W and 6 W (P ≤ 0.05). Compared with the CC group, cold stimulation significantly reduced drip loss, shearing force, and yellowness (a* value) of chicken meat, while significantly increased redness (b* value) (P ≤ 0.05). At Y24, the levels of T-AOC and GSH-PX in the serum of the CS5 group were significantly higher than those of the CC group, while the level of MDA was significantly lower (P ≤ 0.05). The content of TG, FFA, and VLDL in the serum of the CS5 group was significantly elevated, whereas the level of TC and HDL was significantly lower (P ≤ 0.05). In addition, we further explored whether AMPK-mTOR pathway is involved in the regulation of changes in lipid metabolism and the possible regulatory mechanisms downstream of the signaling pathway. The results showed that ICS significantly upregulated the expression levels of AMPK mRNA and protein in the liver of the CS5 group at 36D and Y24, while significantly down-regulating mTOR (P ≤ 0.05). Compared with the CC group, ICS significantly down-regulated the mRNA expression levels of lipid synthesis and endoplasmic reticulum stress-related genes (SREBP1c, FAS, SCD, ACC, GRP78 and PERK) at 36D and Y24, while significantly up-regulating the mRNA expression levels of lipid decomposition and autophagy-related genes (PPAR and LC3) (P ≤ 0.05). In addition, at Y24, the protein expression levels of endoplasmic reticulum stress-related genes (GRP78) in the CS5 group were significantly lower, while autophagy-related genes (LC3 and ATG7) were significantly higher (P ≤ 0.05). ICS can affect meat quality and lipid metabolism in broilers, and when broilers are subjected to acute cold stress, broilers trained with cold stimulation have stronger lipid metabolism capacity.


Assuntos
Antioxidantes , Galinhas , Animais , Masculino , Antioxidantes/metabolismo , Galinhas/fisiologia , Dieta/veterinária , Metabolismo dos Lipídeos , Proteínas Quinases Ativadas por AMP/metabolismo , Chaperona BiP do Retículo Endoplasmático , Fígado/metabolismo , Carne/análise , Serina-Treonina Quinases TOR/metabolismo , RNA Mensageiro/metabolismo , Lipídeos , Ração Animal/análise , Suplementos Nutricionais
10.
Chin J Integr Med ; 30(1): 34-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37076638

RESUMO

OBJECTIVE: To investigate the effects of asperuloside on cervical cancer based on endoplasmic reticulum (ER) stress and mitochondrial pathway. METHODS: Different doses (12.5-800 µg/mL) of asperuloside were used to treat cervical cancer cell lines Hela and CaSki to calculate the half maximal inhibitory concentration (IC50) of asperuloside. The cell proliferation was analyzed by clone formation assay. Cell apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were determined by flow cytometry. The protein expressions of cleaved-caspase-3, Bcl-2, Bax, Cyt-c, cleaved-caspase-4 and glucose-regulated protein 78 (GRP78) were analyzed by Western blot. And the inhibitor of ER stress, 4-phenyl butyric acid (4-PBA) was used to treat cervical cancer cells to further verify the role of ER stress in the apoptosis of cervical cancer cells induced by asperuloside. RESULTS: Asperuloside of 325, 650, and 1300 µg/mL significantly inhibited the proliferation and promoted apoptosis of Hela and CaSki cells (P<0.01). All doses of asperuloside significantly increased intracellular ROS levels, reduced mitochondrial membrane potential, significantly reduced Bcl-2 protein expression level, and increased Bax, Cyt-c, GRP78 and cleaved-caspase-4 expressions (P<0.01). In addition, 10 mmol/L 4-PBA treatment significantly promoted cell proliferation and reduced apoptosis (P<0.05), and 650 µg/mL asperuloside could reverse 4-PBA-induced increased cell proliferation, decreased apoptosis and cleaved-caspase-3, -4 and GRP78 protein expressions (P<0.05). CONCLUSION: Our study revealed the role of asperuloside in cervical cancer, suggesting that asperuloside promotes apoptosis of cervical cancer cells through ER stress-mitochondrial pathway.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Chaperona BiP do Retículo Endoplasmático , Células HeLa , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Linhagem Celular Tumoral
11.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5565-5575, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114149

RESUMO

This study investigated the mechanism of Gegen Qinlian Decoction(GQD) in improving glucose metabolism in vitro and in vivo by alleviating endoplasmic reticulum stress(ERS). Molecular docking was used to predict the binding affinity between the main effective plasma components of GQD and ERS-related targets. Liver tissue samples were obtained from normal rats, high-fat-induced diabetic rats, rats treated with metformin, and rats treated with GQD. RNA and protein were extracted. qPCR was used to measure the mRNA expression of ERS marker glucose-regulated protein 78(GRP78), and unfolded protein response(UPR) genes inositol requiring enzyme 1(Ire1), activating transcription factor 6(Atf6), Atf4, C/EBP-homologous protein(Chop), and caspase-12. Western blot was used to detect the protein expression of GRP78, IRE1, protein kinase R-like ER kinase(PERK), ATF6, X-box binding protein 1(XBP1), ATF4, CHOP, caspase-12, caspase-9, and caspase-3. The calcium ion content in liver tissues was determined by the colorimetric assay. The ERS-HepG2 cell model was established in vitro by inducing with tunicamycin for 6 hours, and 2.5%, 5%, and 10% GQD-containing serum were administered for 9 hours. The glucose oxidase method was used to measure extracellular glucose levels, flow cytometry to detect cell apoptosis, glycogen staining to measure cellular glycogen content, and immunofluorescence to detect the expression of GRP78. The intracellular calcium ion content was measured by the colorimetric assay. Whereas Western blot was used to detect GRP78 and ERS-induced IRE1, PERK, ATF6, and eukaryotic translation initiation factor 2α(eIF2α) phosphorylation. Additionally, the phosphorylation levels of insulin receptor substrate 1(IRS1), phosphatidylinositol 3-kinase regulatory subunit p85(PI3Kp85), and protein kinase B(Akt), which were involved in the insulin signaling pathway, were also measured. In addition, the phosphorylation levels of c-Jun N-terminal kinases(JNKs), which were involved in both the ERS and insulin signaling pathways, were measured by Western blot. Molecular docking results showed that GRP78, IRE1, PERK, ATF4, and various compounds such as baicalein, berberine, daidzein, jateorhizine, liquiritin, palmatine, puerarin and wogonoside had strong binding affinities, indicating that GQD might interfere with ERS-induced UPR. In vivo results showed that GQD down-regulated the mRNA transcription of Ire1, Atf6, Atf4, Grp78, caspase-12, and Chop in diabetic rats, and down-regulated GRP78, IRE1, PERK, as well as ERS-induced apoptotic factors ATF4 and CHOP, caspase-12, caspase-9, and caspase-3, while up-regulating XBP1 to enhance adaptive UPR. In addition, GQD increased the calcium ion content in liver tissues, which facilitated correct protein folding. In vitro results showed that GQD increased glucose consumption in ERS-induced HepG2 cells without significantly affecting cell viability, increased liver glycogen synthesis, down-regulated ATF6 and p-eIF2α(Ser51), and down-regulated IRE1, PERK, and GRP78, as well as p-IRS1(Ser312) and p-JNKs(Thr183/Tyr185), while up-regulating p-PI3Kp85(Tyr607) and p-Akt(Ser473). These findings suggested that GQD alleviates excessive ERS in the liver, reduces insulin resistance, and improves hepatic glucose metabolism in vivo and in vitro.


Assuntos
Diabetes Mellitus Experimental , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Chaperona BiP do Retículo Endoplasmático , Caspase 3 , Caspase 9 , Caspase 12 , Cálcio/farmacologia , Simulação de Acoplamento Molecular , Estresse do Retículo Endoplasmático , Proteínas Serina-Treonina Quinases/genética , Fígado , Apoptose , Insulina , Glucose , Glicogênio/farmacologia , RNA Mensageiro
12.
Sci Rep ; 13(1): 19438, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945738

RESUMO

To provide a theoretical basis for the prevention and treatment of atherosclerosis (As), the current study aimed to investigate the mechanism underlying the effect of homocysteine (Hcy) on inducing the lipid deposition and foam cell formation of the vascular smooth muscle cell (VSMC) via C1q/Tumor necrosis factor-related protein9 (CTRP9) promoter region Hypermethylation negative regulating endoplasmic reticulum stress (ERs). Therefore, apolipoprotein E deficient (ApoE-/-) mice were randomly divided into the control [ApoE-/- + normal diet (NC)] and high methionine [ApoE-/- + (normal diet supplemented with 1.7% methionine (HMD)] groups (n = 6 mice/group). Following feeding for 15 weeks, the serum levels of Homocysteine (Hcy), total cholesterol (TC), and triglyceride (TG) were measured using an automatic biochemical analyzer. HE and oil red O staining were performed on the aorta roots to observe the pathological changes. Additionally, immunofluorescence staining was performed to detect the protein expression levels of CTRP9, glucose-regulated protein 78 kD (GRP78), phosphorylated protein kinase RNA-like ER kinase (p-PERK), activating transcription factor 6a (ATF6a), phosphorylated inositol-requiring enzyme-1α (p-IRE1α), sterol regulatory element binding proteins-1c (SREBP1c) and sterol regulatory element binding proteins-2 (SREBP2) in VSMC derived from murine aortic roots. In vitro, VSMC was stimulated with 100 µmol/l Hcy. After transfection of plasmids with overexpression and interference of CTRP9, ERs agonist (TM) and inhibitor (4-PBA) were given to stimulate VSMC cells. HE staining and oil red O staining were used to observe the effect of Hcy stimulation on lipid deposition in VSMC. Additionally, The mRNA and protein expression levels of CTRP9, GRP78, PERK, ATF6a, IRE1α, SREBP1c, and SREBP2 in VSMC were detected by RT-qPCR and western blot analysis, respectively. Finally, The methylation modification of the CTRP9 promoter region has been studied. The NCBI database was used to search the promoter region of the CTRP9 gene, and CpG Island was used to predict the methylation site. After Hcy stimulation of VSMC, overexpression of DNMT1, and intervention with 5-Azc, assess the methylation level of the CTRP9 promoter through bisulfite sequencing PCR (BSP). The results showed that the serum levels of Hcy, TC, and TG in the ApoE-/- + HMD group were significantly increased compared with the ApoE-/- + NC group. In addition, HE staining and oil red O staining showed obvious AS plaque formation in the vessel wall, and a large amount of fat deposition in VSMC, thus indicating that the hyperhomocysteinemia As an animal model was successfully established. Furthermore, CTRP9 were downregulated, while GRP78, p-PERK, ATF6a, p-IRE1α, SREBP1c, SREBP2 was upregulated in aortic VSMC in the ApoE-/- + HMD group. Consistent with the in vivo results, Hcy can inhibit the expression of CTRP9 in VSMC and induce ERs and lipid deposition in VSMC. Meanwhile, the increased expression of CTRP9 can reduce ERs and protect the lipid deposition in Hcy induced VSMC. Furthermore, ERs can promote Hcy induced VSMC lipid deposition, inhibition of ERs can reduce Hcy induced VSMC lipid deposition, and CTRP9 may play a protective role in Hcy induced VSMC lipid deposition and foam cell transformation through negative regulation of ERs. In addition, The CTRP9 promoter in the Hcy group showed hypermethylation. At the same time as Hcy intervention, overexpression of DNMT1 increases the methylation level of the CTRP9 promoter, while 5-Azc can reduce the methylation level of the CTRP9 promoter. Finally, Hcy can up-regulate the expression of DNMT1 and down-regulate the expression of CTRP9. After overexpression of DNMT1, the expression of CTRP9 is further decreased. After 5-Azc inhibition of DNMT1, the expression of DNMT1 decreases, while the expression of CTRP9 increases. It is suggested that the molecular mechanism of Hcy inhibiting the expression of CTRP9 is related to the hypermethylation of the CTRP9 promoter induced by Hcy and regulated by DNMT1. 5-Azc can inhibit the expression of DNMT1 and reverse the regulatory effect of DNMT1 on CTRP9. Overall, the results of the present study suggested that Hcy induces DNA hypermethylation in the CTRP9 promoter region by up-regulating DNMT1 expression, and negatively regulates ERs mediated VSMC lipid deposition and foam cell formation. CTRP9 may potentially be a therapeutic target in the treatment of hyperhomocysteinemia and As.


Assuntos
Aterosclerose , Hiper-Homocisteinemia , Camundongos , Animais , Endorribonucleases/metabolismo , Chaperona BiP do Retículo Endoplasmático , Músculo Liso Vascular/metabolismo , Células Espumosas/metabolismo , Hiper-Homocisteinemia/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Aterosclerose/metabolismo , Regiões Promotoras Genéticas , Metionina/metabolismo , Apolipoproteínas E/metabolismo , Lipídeos/farmacologia , Homocisteína/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Estresse do Retículo Endoplasmático
13.
J Chem Neuroanat ; 134: 102348, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37858742

RESUMO

OBJECTIVES: Exposure to maternal obesity has been shown to make offspring more prone to cognitive and metabolic disorders later in life. Although the underlying mechanisms are unclear, the role of endoplasmic reticulum (ER) stress in the fetal programming process is remarkable. ER stress can be activated by many chronic diseases, including obesity and diabetes. Therefore, our study aimed to investigate the role of ER stress caused by maternal diet-induced obesity in the offspring hippocampus. We also evaluated the protective effect of N-acetylcysteine (NAC) against ER stress. METHODS: A rat obesity model was created by providing a high-fat (60 % kcal) diet. N-acetylcysteine (NAC) was administered at a dosage of 150 mg/kg via the intragastric route. The animals were mated at the age of 12 weeks. The same diet was maintained during pregnancy and lactation. The experiment was terminated on the postnatal 28th day, and the offspring's brain tissues were examined. Immunohistochemical staining for ER stress markers was performed on sections taken from tissues after routine histological procedures. RESULTS: The results revealed increased GRP78, PERK, and eIF2α immunoreactivities in the hippocampal dentate gyrus (DG) and cornu ammonis 1 (CA1) regions in the obese group offspring, while the expression of those markers in those regions normalized with NAC supplementation (p < 0.01). Statistical analysis of XBP1 immunoreactivity H-scores revealed no difference between the study groups (p > 0.05). DISCUSSION: These results suggest that exposure to obesity during the prenatal period may cause increased ER stress in hippocampal neurons, which have an important role in the regulation of learning, memory and behavior, and this may contribute to decreased cognitive performance. On the other hand, NAC stands out as an effective agent that can counteract hippocampal ER stress.


Assuntos
Acetilcisteína , Estresse do Retículo Endoplasmático , Humanos , Ratos , Feminino , Animais , Gravidez , Lactente , Obesidade , Chaperona BiP do Retículo Endoplasmático , Hipocampo/metabolismo
14.
Environ Sci Pollut Res Int ; 30(52): 112517-112535, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831247

RESUMO

Cadmium (Cd) is a widely distributed environmental contaminant that is highly toxic to animals and humans. However, detailed reports on Cd-induced programmed necrosis have not been seen in chicken testicular Leydig cells. Selenium (Se) is a trace element in the human body that has cytoprotective effects in a variety of pathological damages caused by heavy metals. This study investigated the potential mechanisms of Cd-induced programmed cell necrosis and the antagonistic effect of Se on Cd toxicity. Chicken testis Leydig cells were divided into six groups, namely, control, Se (5 µmol/L Na2SeO3), Cd (20 µmol/L CdCl2), Se + Cd (5 µmol/L Na2SeO3 and 20 µmol/L CdCl2), 4-phenylbutyric acid (4-PBA) + Cd (10 mmol/L 4-phenylbutyric acid and 20 µmol/L CdCl2), and Necrostatin-1 (Nec-1) + Cd (60 µmol/L Necrostatin-1 and 20 µmol/L CdCl2). The results showed that Cd exposure decreased the activity of CAT, GSH-Px, and SOD and the concentration of GSH, and increased the concentration of MDA and the content of ROS. Relative mRNA and protein expression of GRP78, PERK, ATF6, IRE1, CHOP, and JNK increased in the Cd group, and mRNA and protein expression of TNF-α, TNFR1, RIP1, RIP3, MLKL, and PARP1 significantly increased in the Cd group, while Caspase-8 mRNA and protein expression significantly decreased. The abnormal expression of endoplasmic reticulum stress-related proteins was significantly reduced by 4-PBA pretreatment; the increased expression of TNF-α, TNFR1, RIP1, RIP3, MLKL, and PARP1 caused by Cd toxicity was alleviated; and the expression of caspase-8 was upregulated. Conversely, the increased mRNA and protein expression of endoplasmic reticulum stress marker genes (GRP78, ATF6, PERK, IRE1, CHOP, JNK) caused by Cd was not affected after pretreatment with Nec-1. We also found that these Cd-induced changes were significantly attenuated in the Se + Cd group. We clarified that Cd can cause programmed necrosis of chicken testicular Leydig cells through endoplasmic reticulum stress, and Se can antagonize Cd-induced programmed necrosis of chicken testicular Leydig cells.


Assuntos
Selênio , Animais , Masculino , Humanos , Selênio/farmacologia , Selênio/metabolismo , Cádmio/metabolismo , Galinhas/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Caspase 8 , Testículo/metabolismo , Células Intersticiais do Testículo/metabolismo , Chaperona BiP do Retículo Endoplasmático , Fator de Necrose Tumoral alfa/metabolismo , Necrose/metabolismo , Estresse do Retículo Endoplasmático , RNA Mensageiro/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Estresse Oxidativo
15.
Zhonghua Yi Xue Za Zhi ; 103(36): 2881-2888, 2023 Sep 26.
Artigo em Chinês | MEDLINE | ID: mdl-37726995

RESUMO

Objective: To explore the effect and mechanism of 1, 25(OH)2D3 on myocardial inflammation induced by Coxsackie virus B3 (CVB3) in mice. Methods: Wild type (WT) and 1α-hydroxylase knockout [1(OH)ase-/-] male mice were divided into four groups: WT group, WT+CVB3 group, 1(OH)ase-/-+CVB3 group and 1(OH)ase-/-+CVB3+VD3 group, with 8 mice in each group. The indicators for evaluating myocardial cell injury were examined by different methods. The mRNA levels of pro-inflammatory cytokines [interlenkin (IL)-1ß, IL-6, interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α)] were determined by quantitative real-time PCR. Hematoxylin-eosin (HE) staining was used to observe the myocardial histopathological changes. The apoptosis of myocardial cells was detected by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining and flow cytometry. Fluo-4/AM fluorescence probe was used to detect intracellular calcium ion content. Meanwhile, the expression levels of Ca2+/Calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) protein as well as endoplasmic reticulum stress-related proteins like glucose-related protein 78 (GRP78) and C/EBP homologous protein (CHOP) in the myocardial tissues were detected by Western blot. Results: Compared with WT group, the mRNA levels of pro-inflammatory factors increased in the cardiomyocytes of mice in WT+CVB3 group, including IL-1ß (14.88±3.32 vs 1.03±0.02, P=0.009), IL-6 (7.00±1.09 vs 1.81±0.18, P=0.005), IFN-γ (4.70±1.11 vs 1.34±0.34, P=0.006) and TNF-α (17.20±3.22 vs 1.02±0.12, P<0.001). Similarly, the infiltration of inflammatory cells, and the apoptosis rate of cardiomyocytes elevated (16.66%±1.09% vs 7.85%±1.12%, P=0.012). The level of calcium ions in myocardial cytoplasm was significantly higher in WT+CVB3 group than that in the WT group (2.98±1.05 vs 0.96±0.10, P=0.006). Likewise, the expression levels of pCaMKⅡ(1.97±0.34 vs 1.00±0, P<0.001), GRP78 (1.78±0.19 vs 1.00±0, P=0.005) and CHOP (1.62±0.09 vs 1.00±0, P=0.002) in WT+CVB3 group up-regulated. The above myocardial cell injury markers were more significant in the 1(OH)ase-/-+CVB3 group. In the 1(OH)ase-/-+CVB3+VD3 group, 1, 25(OH)2D3 supplementation significantly improved myocardial cell injury indicators. Meanwhile, the specific inhibitors of CaMKⅡ can also reduce the myocardial injury and apoptosis rate of CVB3-infected mice. Conclusion: 1, 25(OH)2D3 deficiency can aggravate myocardial inflammation through over activation of CaMKⅡ.


Assuntos
Cálcio , Miocardite , Masculino , Animais , Camundongos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Chaperona BiP do Retículo Endoplasmático , Interleucina-6 , Fator de Necrose Tumoral alfa , Inflamação
16.
Clin Exp Immunol ; 213(2): 221-234, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37249005

RESUMO

Nasopharyngeal carcinoma (NPC) is endemic in Southern China and Southeast Asia. Hyperthermia is widely used in combination with chemotherapy and radiotherapy to enhance therapeutic efficacy in NPC treatment, but the underlying anti-tumor mechanisms of hyperthermia remain unclear. Complement C3 has been reported to participate in the activation of immune system in the tumor microenvironment, leading to tumor growth inhibition. In this study, we aimed to explore the effect and mechanisms of hyperthermia and investigate the functional role of complement C3 in NPC hyperthermia therapy (HT). The serum levels of complement C3 before and after hyperthermia therapy in patients with NPC were analyzed. NPC cell lines SUNE1 and HONE1 were used for in vitro experiment to evaluate the function of complement C3 and HT on cell proliferation and apoptosis. SUNE1 xenograft mouse model was established and tumor-bearing mice were treated in water bath at a constant temperature of 43°C. Tumor samples were collected at different time points to verify the expression of complement C3 by immunohistochemical staining and western blot. The differential expressed genes after hyperthermia were analyzed by using RNA sequencing. We found that complement could enhance hyperthermia effect on suppressing proliferation and promoting apoptosis of tumor cells in NPC. Hyperthermia decreased the mRNA expression of complement C3 in tumor cells, but promoted the aggregation and activation circulating C3 in NPC tumor tissue. By using in vitro hyperthermia-treated NPC cell lines and SUNE1 xenograft tumor-bearing mice, we found that the expression of heat shock protein 5 (HSPA5) was significantly upregulated. Knockdown of HSPA5 abrogated the anti-tumor effect of hyperthermia. Moreover, we demonstrated that hyperthermia downregulated CD55 expression via HSPA5/NFκB (P65) signaling and activated complement cascade. Our findings suggest that therapeutic hyperthermia regulates complement C3 activation and suppresses tumor development via HSPA5/NFκB/CD55 pathway in NPC.


Assuntos
Hipertermia Induzida , Neoplasias Nasofaríngeas , Humanos , Animais , Camundongos , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Chaperona BiP do Retículo Endoplasmático , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Antígenos CD55 , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
17.
Phytother Res ; 37(8): 3543-3558, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37128721

RESUMO

Diabetic cardiomyopathy (DCM) is a common complication in patients with diabetes, and ultimately leads to heart failure. Endoplasmic reticulum stress (ERS) induced by abnormal glycolipid metabolism is a critical factor that affects the occurrence and development of DCM. Additionally, the upregulation/activation of silent information regulation 2 homolog-1 (SIRT1) has been shown to protect against DCM. Tanshinone II A (Tan IIA), the main active component of Salviae miltiorrhizae radix et rhizome (a valuable Chinese medicine), has protective effects against cardiovascular disease and diabetes. However, its role and mechanisms in diabetes-induced cardiac dysfunction remain unclear. Therefore, we explored whether Tan IIA alleviates ERS-mediated DCM via SIRT1 and elucidated the underlying mechanism. The results suggested that Tan IIA alleviated the pathological changes in the hearts of diabetic mice, ameliorated the cytopathological morphology of cardiomyocytes, reduced the cell death rate, and inhibited the expression of ERS-related proteins and mRNA. The SIRT1 agonist inhibited the activities of glucose-regulated protein 78 (GRP78). Furthermore, the opposite results under the SIRT1 inhibitor. SIRT1 knockdown was induced by siRNA-SIRT1 transfection, and the degree of GRP78 acetylation was increased. Cumulatively, Tan IIA ameliorated DCM by inhibiting ERS and upregulating SIRT1 expression.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Humanos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Chaperona BiP do Retículo Endoplasmático , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Sirtuína 1/metabolismo , Estresse do Retículo Endoplasmático
18.
Environ Toxicol ; 38(7): 1641-1650, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37013980

RESUMO

Licoricidin (LCD) is an activity compound of the roots of Glycyrrhiza uralensis, which has therapeutic efficacy, including anti-virus, anti-cancer, and enhanced immunity in Traditional Chinese Medicine. Herein, this study aimed to clarify the effect of LCD on cervical cancer cells. In the present study, we found that LCD significantly inhibited cell viability via inducing cell apoptosis and companies with cleaved-PARP protein expression and caspase-3/-9 activity. Cell viability was markedly reversed these effects by pan-caspase inhibitor Z-VAD-FMK treatment. Furthermore, we showed that LCD-induced ER (endoplasmic reticulum) stress triggers upregulating the protein level of GRP78 (Bip), CHOP, and IRE1α, and subsequently confirmed the mRNA level by quantitative real-time polymerase chain reaction. In addition, LCD exhibited the release of danger-associated molecular patterns from cervical cancer cells, such as the release of high-mobility group box 1 (HMGB1), secretion of ATP, and exposure of calreticulin (CRT) on the cell surface, which led to immunogenic cell death (ICD). These results provide a novel foundation that LCD induces ICD via triggering ER stress in human cervical cancer cells. LCD might be an ICD inducer of immunotherapy in progressive cervical cancer.


Assuntos
Proteína HMGB1 , Neoplasias do Colo do Útero , Feminino , Humanos , Endorribonucleases/farmacologia , Proteína HMGB1/metabolismo , Morte Celular Imunogênica , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases , Apoptose , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático
19.
Biol Pharm Bull ; 46(2): 187-193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724947

RESUMO

Endoplasmic reticulum (ER) dysfunction is characterized by ER stress, which can be triggered by sepsis. Recent studies have reported that lessening ER stress is a promising therapeutic approach to improving the outcome of sepsis. Genipin is derived from gardenia fruit, which is a traditional Chinese medicinal herb for anti-inflammation. Here, mice were treated with genipin (2.5 mg/kg) intravenously to assess its biological effects and underlying mechanism against polymicrobial sepsis. Furthermore, the present study focused on detecting the levels of ER stress-related proteins, including protein kinase R-like ER kinase (PERK), glucose-regulated protein of 78 kDa (GRP78), phosphorylated-eukaryotic initiation factor 2α (p-eIF2α), and CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP). The results demonstrated that genipin significantly decreased the serum concentrations of tumor necrosis factor-α and interleukin-6, alleviated histopathological damage to the lungs, livers and spleens, and even improved the survival rates of septic mice. Moreover, sepsis significantly upregulated the protein expression levels of splenic GRP78, PERK, p-eIF2α and CHOP, but their levels were significantly suppressed by genipin. Furthermore, genipin also significantly downregulated cleaved caspase-3 expression levels and reduced sepsis-induced splenocyte apoptosis. In conclusion, genipin potentially improved the survival rate of sepsis and attenuated sepsis-induced organ injury and an excessive inflammatory response in mice. The effects of genipin against sepsis were potentially associated with decreased splenocyte apoptosis via the attenuation of sepsis-induced ER stress to further inhibit ER stress-induced apoptosis.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Sepse , Camundongos , Animais , Baço/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Sepse/complicações , Sepse/tratamento farmacológico , Fator de Transcrição CHOP/metabolismo
20.
J Ethnopharmacol ; 308: 116219, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36758912

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Salvianolic acid A (SAA) is the main active component of the classic anti-atherosclerotic drug Salvia miltiorrhiza Bunge. Inflammation-induced infiltration of monocyte/macrophages into the vascular wall is the initiating step in atherogenesis, and targeted blocking of this step may provide a promising avenue for the precise treatment of atherosclerosis. However, the effect of salvianolic acid A on macrophages is still unknown. AIM OF THE STUDY: To evaluate the effect of SAA on macrophage infiltration and the underlying mechanism of SAA against atherosclerosis. MATERIALS AND METHODS: Vascular endothelial cells were stimulated with lipopolysaccharide (LPS) to simulate the inflammatory environment, and its effect on monocyte/macrophages was evaluated. Mass spectrometry was used to identify the proteins that play a key role and further validated them. LncRNA sequencing, western blot analysis, RNA immunoprecipitation, and RNA pulldown were used to elucidate the mechanism of SAA against atherosclerosis. Finally, ApoE-/- mice were fed a high-fat diet to creat an in vivo atherosclerosis model. Secretory GRP78 content, lipid levels, plaque area, macrophage infiltration, and degree of inflammation were assessed by standard assays after 16 weeks of intragastric administration of SAA or biweekly tail vein injections of GRP78 antibody. RESULTS: After LPS stimulation, the increased secretion of GRP78 recruits circulating monocyte/macrophages and drives monocyte/macrophage adhesion and invasion into the vascular intima to promote atherosclerosis progression. Interestingly, SAA exerts anti-atherosclerosis effects by inhibiting the secretion of GRP78. Further mechanistic studies indicated that SAA upregulates the expression of lncRNA NR2F2-AS1, which reverses the abnormal localization of the KDEL receptor (KDELR) caused by inflammation. It promotes the homing of GRP78 from the Golgi apparatus to the endoplasmic reticulum rather than secreting outside the cell. CONCLUSION: SAA alleviates atherosclerosis by inhibiting GRP78 secretion via the lncRNA NR2F2-AS1-KDELR axis. The findings not only provide a new direction for the precise therapy of atherosclerosis based on secretory GRP78 but also elucidate the pharmacological mechanism of SAA against atherosclerosis, putting the foundation for further development and clinical application of SAA drugs.


Assuntos
Aterosclerose , RNA Longo não Codificante , Camundongos , Animais , Células Endoteliais/metabolismo , Chaperona BiP do Retículo Endoplasmático , Lipopolissacarídeos , Aterosclerose/tratamento farmacológico , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA